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On the relations betweenquantum fields
and local algebras

of observablesover curved space-time
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Abstract. It is shownthatquantumfieldsovera curvedspace-timewith atransitive
groupofisometriesare well-definedobjectsat eachspace-timepointin themeaning
ofsesquilinearforms. If thesequantumfieldsareassociatedwith a local netof ob-
servablesthentheycanbeobtainedaslimits ofsequencesofobservablesmeasurable
in space-timeregionsshrinking to agivenpoint.

1. INTRODUCTION

In the last yearsthe relationsbetweenthegeneraltheoryof quantizedfields and the
algebraicrelativisticquantumtheoryhavebeenintensivelystudiedand someopenprob-
lemshavebeensolved (seee.g. [I] — [5] and referencesthere).In the former themain

objects arc operator-valueddistributions (called quantum fields) and in the latter the
mainobjectis alocal netof algebras(calledlocal algebrasof observables).In particular

a methodof recoveringquantumfields from a given localnetof algebrashasbeenpre-

sentedin [1] — [4]. An interestingresultprovedandusedin thesepapersisthat quantum
fields are well-definedobjectsat eachspace-timepoint in themeaningof sesquiinear
forms, i.e. the expectationvaluesof the quantum fields are continuousfunctionsover

space-time.Theproofs areessentiallythe translationcovariance,spectrality, andstrong
continuityof the quantumfields. Theunderlyingspace-timeis theMinkowski space-

Key-Words:QuantumFields,Algebrasof Obscrvables,CurvedSpace-Time.
1980MSC: 81E05, 83 C99,46L 60.



408 MANFRED WOLLENBERO

time.
At thesametimethegeneraltheoryof quantizedfields andthealgebraicrelativistic

quantumtheoryovercurvedspace-timehasbeensuccessfullyinvestigatedin a number
of recentpapers(seee.g. [6]—[9] andthemonograph[10] fordetails).Thereforeit seems

to beinterestingto extend the cited results— aboutthe pointwisemeaningof quantum
fields andaboutthe recoveringof quantumfieldsfrom local netsof algebras— to thecase
of curvedspace-time.This is the aim of thepresentpaper.Here a mainassumptionis
that thespace-timemanifoldshaveatransitivegroupof isometries.Naturallythe proofs

in this paperconsiderablydiffer from thosein [1] — [4] becausethereis no spectrality
andnotransitiveabeiangroupof isometnes,ingeneral.Theresultsarenearlythesame.

In differenceto the resultsfor the Minkowski space-timethe expectationvaluesof the
quantumfields are only local continuousfunctionsover space-time.If the space-time
manifold is Minkowskianthenthe resultsarealsonewincasethatthereis no spectrality

and/orthe testfunctionspacefor thequantumfields is C~(W1). In thepresentpaperall
resultsareprovedfor thetestfunctioncspaceC

0
00(M). Onecanreplaceit by another

space C c C
0

00(Jvt) providedthe structureof C is compatiblewith the actionof the
group of isometries.

2. QUANTUM FIELDSAND LOCAL NETS OF ALGEBRAS

In this sectionwe introducethenecessarydefinitions,assumptions
1and notation.

Let Jvt be a connectedC°°-manifoldof dimensionn ~ 1. We assumethat there
is a metric C on Jvt, i.e. a continuoussymmetrictensorfield C~3(z)which is non-

degenerate.Forsimplicity we alsoassumethat thecomponentsof the metrictensorare

C°°-functionson M. Thus 14 has (pseudo)— Riemannianstructure.Furtherwe as-

sumethat thereis given a transitiveconnectedLie group ~ of isometrieson {.M, C}.
Wesaythat 14 is equippedwith acausalitystructureif thereis a specialmap I from
theopensubsetsof M into the opensubsetsof .M; ..L: 14 ~ 0 —f 0±c 14, C)~-

is thecausalcomplementof 0, thepropertiesof J.. arenot importanthere). Next we
require thatthereexistsastronglycontinuousunitary representationU( g) of thegroup

~ g on a separableHilbert space)C.
Now wedescribewhat we meanby <<quantumfield>> in thispaper.

DEFINITION 1. A quadruple{~C,U( .) , 1.),A( .) } is calleda quantumfield if it satisfies

thefollowing assumptions:(i) A() : C0
00(Ivt) ~—‘ A(f) is a linearmapinto the

setof closableoperatorson K. Further,dom A(f) = V and A(f*) V = A(f) for
all f E C~°(M).If {V,x} isachartof14 and supp f c V, then

A(f) = A~((detC~)+f~)

where~ G~representf, G in thechart{V, x} andA~()is a distributionon C
0

00(xV).
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(ii) Forfixed u E V the map C~’°(M)~ f —~ A(f)u is strongly continuous.
(iii) There is a countable set V~C V which is a core for all A( f), i.e. A(f) V~=

A(f).
(iv) V is invariantunderU(~),i.e. U(g)V C V forall g E ~. Further, U(g)

A(f)U(g)u=A(f
8)u,uEV, with f~=fg~.

If thereis a causal structure I on 14 we call the quantum field causal if the relation

(1) (A(f1)u,A(f2)v) = (A(f2)u,A(f1)v)

holds with u,v EV, supp f~C 0~,and 0~C 0~.

REMARK 1. Assume we have a quantum field theory over such a (pseudo) Riemannian

manifold {1v1, G}. This is, we have a set of operator-valued linear forms A,(~),j =

1,2,... ,N, on C~°(1vt)satisfying (i), (ii), (iv) of Definition 1 A(.) replaced by

A1(~))and the invariance of thedomain V(A~(f)VC 2)) and we have a vacuum
vectorw(U(g)w = w for g E g) which is cyclic for the polynomialalgebraV(A,)
in thefields A,(f). Thenit is easyto prove(iii) for theset V = ~P(A3)w. Thismeans
<<quantumfields>> of a quantum field theory are also quantumfields in themeaningof

Definition I (theideaof theproofcanbetakenform [12]). Foradefinitionof aquantum

field theoryovercurvedspace-timeseee.g. [7], [9], [10].

REMARK 2. It is possibleto generalizeDefinition 1 in thefollowingway:

1. Foreachopenset 0 thereis a denseset V(0) in K: with V(0~)C V(02)
if 01D 02 and V = U0V(0).

2. dom A(f) = V(0) with supp f = 0,0 = intO. (this means the domain

of A( f) candependon the supportof f ).2. The domainsV(0) are to transform
covariantwith respectto g. Laterwewill seethat it is sometimesusefulandnecessary
to introducesuch<<local>> domains.Now we cometo thelocal net of algebras.

DEFINITION 2. A triple {)C, U( .) , A) is calleda local netofalgebrasif it satisfiesthe

following assumptions:(i) To eachopenregion 0 C 14 thereis assigneda von
NeumannalgebraA(0) on AC and A = u0A(0) (net).

(ii) 0~~ 02 implies A(01) D A(02) (isotony).

(iii) U(g)A(0)U(g) = A(gO) for all g E ~ and all open regions 0 (covari-
ance).

If thereis a causalstructure I on M, then we call the local net {K:, U(.),A)

causalif

A1A2 = A2A1for all A~E A(0~),i = 1,2,
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with 0~C Ot (for a definition of a local netof algebrasof obscrvablesovercurved

space-timeandsomeassertionsseee.g. [6], [8]).
A naturalassumptionfor the connectionbetweenlocal netsof algebrasandquantum

fields(belongingto thesametheory) is thattherelation

(2) (A(f)v,Cu) = (v,CA(f)u)

holdswith a,v C V, C E A(0)’, andsupp f C 0. We saythat A(.) is relatively

local to {iC, U( .) , A) if(2) is fulfilled. From thestrongcontinuity of thequantumfield
it follows that(2) is alsotruefor f with supp f ~ 0.

PROPOSITIONI. Let {AC, U( .) , V A( .) } be a quantumfield which is rclativity lo-

caltoanetofaigebras{IC,U(),A}. Set V(0) := {Cv;v C V, C E A(0)’}.
Thenthe extensionA0(f) := A( f)* D( 0) of A(f) is affiliated to A(0)( 0 =

suppf). In particular we have Cu E domA0(f) and A0(f)Cu = CA0(f)v. if

a C dom A0(f) andA0(f)Cu = CA0(f)u if a E dom A0(f) and Ce A(0)’.

Proof Theproof is the sameasin [3, PropositionI]. .

Wecanconsiderthequadruple{)C, U( .) , V(.) , A0( .)} asaquantumfield with <<lo-

cal>> domain(seeRemark2).
At theendof this sectionwe notesomefactsaboutthelocal coordinateson 14 given

by the transitiveconnectedLie group ~ of isometrics(seee.g. Pontrjagin[II, ch. 7]).

Let P bea pointof 14. The isotropy groupof P (given by ~) is denotedby S~.

14 is diffeomorphto c/5~.Further,thereis asubmanifold of c (no subgroupin

general)andaneighbourhoodV~of P suchthat the map

~ g —, P9 := gP e

is oneto oneandfor thereis onechart {ç~,>~}.Put = U, C ]R~.Thus we

canparametrizeg~by thesecoordinates: g = x;
1(z) =: g(z),z E U~,g(O) I

(identityin ~). Correspondinglywe defineachart {V~,x~} for the neighbourhoodV~

of P by

~ P
9 := gP = g(z)P —~ z EU~

with := z = x~g.Sometimeswe write P9 = P(z). Becausec is transitive
we canusethis chartto definechartsfor arbitrarypoints P’. Let g’ E g besuchthat

g’P = P’. Thenwe define a chart {V~,z~,}by gp’ := g’c~g’
1,V~,: g’V~,and

:=



ON THE RELATIONS BETWEENQUANTUM FIELDSAND LOCAL ALGEBRAS 411

Furtherwe considerthe following functions. Let z,z’ E Ui,. Weset P(z,z’) :=

g(z)~g(z’)P= g(z)~P(z’).Forsmall z — z’~thepoint P(z,z’) isin V~.Then
we write ~r~P(z,z’) = w =: ‘y(z,z’) for the coordinatesw of the point P(z,z’).

Correspondinglywewrite ‘71 (z,z’) for thecoordinatesof thepoint g(z)g(z’) P E

‘y, ~ are C~-functionsof z,z’. From thedefinitionof ‘y it follows that ‘y(o, z’) =

and ‘y(z, z) = 0. Furtherwe getthat thereexistsnonemptyopensets U3~C U2~C

U1,~C U~,suchthatforallz’ C U2,~,w C U3~thefunctionw = ‘~y(z,z’)isinvertible
with respectto z E U1~.Thismeansthereisa C~-functionk(w,z’) from U3~x

into U1 ~with z = k(w, z’). The existenceof the function k(w, z’) securesthat we
canparametrizethe region W~:= ç

1U
2~outgoingfrom the points P(w) = P’ E

:= x~’U3~with thehelp of cP(~) {g(z) E = k(w,z’), Zr E U2~}C
This factandthepropertiesof thefunctions ‘y( z,z’) ‘~ (z,z’), k(w,z’ will beusedin

thefollowingsections.

3. QUANTUM FIELDS AT SPACE-TIME POINTS

Theaim ofthis sectionis to showthatquantumfields arewell- definedateachspace-
time point in the meaningof sesquilinearforms. First we extendthe domain of the

quatntumfields and introducea densesetof vectorsfor eachspace-timepoint.
Fromthe factsthat g is aLie group, A(f) a is stronglycontinuousin f, and A( f)

is covariantwe getthat

A(f)U(g)~u U(g)~U(g)A(f)U(g)*u= U(g)*A(f9)u

is strongly continuous in g C Q. Let w C C0
00(g). Then we consider the set V

9 of
vector a given by

w(g)U(g)~p(dg)ü,ÜEV,

where ~ is theHaarmeasureon g. Obviously 2)9 is invariant under U(g), 9 C
Fromthis definition and the strongcontinuity of A(f) U(g)*u in g it follows that

V9 C domA(f) forall f C Cg°(Ivt). ItiseasytoshowthatV9 isalsoacoreforall
A(f) and it containsa countable set which is a core for all A( f). Moreover we see
that for fixed u C V and f C C0

00(Jvt) the map

C
0~(c)~ w —* A(f)w(g)u

is strongly continuousand A(f) is also stronglycontinuousin f C C~(M)~~n the
largerdomain V U V9. Thus we canassumein the following that V contains

Next we cometo a domain for eachpoint P E 14. Let ~ and the
coordinatesof g~,,V~beasdescribedat theendof the lastsection.Let ~ C C~(U2 p,),
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(U2~) ~ Let G~(x) bethe metric tensorin the chart {V~,z~}.Then we define
a boundedoperatorw(~) by

:= f dx(detG~(z))’I
2w(z)U(g(x))a, a C K:,

where g(x) are the parametrized elements of c~.Theset of all suchvectors w(c~)u

(if u, w runthroughIC, C~°([12~)andif ~, V~,W~run throughall admissiblecandi-
dates)is denotedby ?C~.IC~is densein IC andit is covariant, U( g) IC~= )Cg~for all

g Cc (use~ = for P’ = pP andtheisometryofg). Furtherweseethat the
set 1C(Mr~):= fl~eNK:~,is densein IC (usethecovarianceof IC and thefactthat the

subset {‘7g(z)’y’; z C U
2~}with ‘7 C c2 and ‘7P C A~also leadsto coordinates

of aneighbourhoodof P). Weomit thesimpleproofs.
Now weneedsometechnicalresults.Let v C 2)9. Thenwehavev = f2(~)a with

12 EC0
00(g),ueV. Weconsiderthemap

C
0

00(Jvt)x C
0

00(g) ~ f
1 x f2 —~ J1~(f1 >< f2) = A(f1)f2(g)u.

According to our precedingremarksthis map is separatelystronglycontinuousin f1
and f2. If {V, z} is chart of 14,{U, x } is a chartof Q, supp f1 C V, and supp

f2 C U thenweget

x f2) = J,hVXU((detC~)”
2ft,v X Duf

2u)

where Cv,f1,~,f2,u represent C, f1 , f2 in the corresponding charts. D~d!.i repre-
sentstheHaarmeasurein thechart {U, x} and J,~0>~is a separatelystronglycontin-

uousmap from C0
00(xV)x Co(xU) in IC. Thefollowing lemmaextendsthedomain

of J,~.

LEMMA1. Let A
1 C M, A2 C ~ be open boundedsets. Then themap J,~ C0

0°
(A

1) x C~°(A2) extendsto a stronglycontinuousmapfrom C~(A1) ®C~(A2) =

x A2) to IC.

Proof It is sufficient to prove it for one chart because we can cover A1 x A2 by finitely
many charts. Thus the proof of the lemma reduces to the case where ~ C R~, A2 C

are open bounded regions. The strong continuity of J~,(f1 x f2) implies thecon-
tinuity of the map

C~°(A1)xC0
00(A

2)~f1 xf~—4(w,J~(f1xf2))
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for eachvector w C IC. The kerneltheoremsaysthat this map canbe continuously
extendedto a map from C0

00(A
1 x A2) in ~t. Wedenotethis map by W~,~(f)=

(w, ~ f)). Theweak continuityof ~ f) impliesthe strongby the following argu-
ment:Considerthemap

x A2) x C~°(A1x A2) ~ p1 x P2 —

‘ (J~(g1,j~(g2))

which is separately continuous in Pi and 92 Againby the kernel theorem it extends to

a map which is jointly continuous. This implis that the map

x A2) ~ —‘ (~~(g),~~(g))= II~~(g)II
2

is continuous.ThereforeJ,h(f) is stronglycontinuosin f E C~°(A
1x A2).

Let P C 14 andlet c~,V~,Wi,, ~J2~ = ~ ‘y(z, z’) beasdescribedattheendof
the lastsection.Let h C C~°(U2 ~). Furtherlet beanapproximatedeltafunction
for the point P. That is, in the chart {V~,x~}it is representedby a sequenceof func-

tions 6~C C~(U2,~)with ~~(z) � 0, fdz(det G~(z))’/
2~~(z)f(z)— f(0)

Oasn—~ cx, and the supportof 6~(z)shrinks to the point zero. We set (detC~

(Z))112 ~ (Z) =: (~(z). Let f
2 C C~’°(c). Forsimplicity supposethat the support

of f~:= f20g(zY’,Z C U2~,isinonechart{U,it} of c. Let ‘y2(z,x2) = z3 bethe

coordinatesof thepoint g(z)’ g1(x2) C U C c where g1(x2) is the parametrization

of theelementsg~C U given by the chart {U, ~t}. Further, let f2 also denote the
representation of f2 in the chart {U, ic}. Set A = icU C R~and

g~(x1,z2): fdzf(det C~(z))
t12h(z)

6~(’y(z,x
1))f2(’y2(z,z2))

LEMMA2. Thefunctionsg~(~, x2) haveforail sufficientlylarge n supportin U2 ~x
A and tendin C~°(U2 ~ x A) topologyto a function g~(x1, x2).

Proof Since the support of (~(w) tendsto thepoint zero,the supportof the functions
(~(.-y(z,x1)) in z1 for fixed z C suppIi C U2 , shrinks to the point x1 = a. This and

the factthat f2(’12(a,a2)) has support in A for the z-values in question imply that

g(.,~)C CO°°(U2~x A) for all sufficiently large n. Furtherwehavetheexistenceof
the C°°-functionk(w,a1) = z for x~C U2~and w C U3~.For sufficientlylarge n
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thevaluesof a~and w in theintegranddefining gfi(a~, a2) satisfythis assumption.
This gives

g~(’~,a2) =fdz[(det C~(z))
112h(z)ö~(’7(z,at))

f
2(~2(z, a2))]

=fdw[(det C2(k(w,a1)))”
2h(k(w,a

1))ó~(w)x

x f2(’72(k(w,z1),a2))D(w,a1)] =

= fd w(~(w)F(a1, a2, w)

where D(w, a1) is the Jacobian determinant. The function F(x1 , a2, w) is a

function in a1,a2 anda C°°-functionin a1,a2,w. This implies that g~(.,) tends

in C°°-topologytothefunctiong(.,.) = F(.,.,0). .

Now we arein aposition to provethemain theoremof this section.

THEOREM 1. Let {IC,U(.),V,A(.)} beaquantumfield andlet 6~(.)beanapprox-
imatedeltafunctionfor thepoint P. Then:

(i) Thehmit A(P)[a,v] := lim(u,A(8~~)v) exists for all u C IC~and all

v C V~.
(ii) Thereisa neighbourhoodA17~of P anda denseset IC(N2) := fl1/eNIC~/in

K: such that for all a C lC(N~),v C V9 themap N~~ P’ — A(P’)[ a,v] is a

C~-function.

(iii) Thesesquilinearform A(P) [.,.] is covariant, i.e. A(9P) [a, v] = A( P) I U
(g)*a U(g)*v] for a C IC9~,v C Vç.

(iv) Let f C C0
00(M) withsupp f C N~(see(ii)~.SetA(f)[a,v] := fdxA~

(z)[u,v]f~(x)(det C~(a))112 where A~(.)[u,v],f~,G~ denote the representation

of A(.)[u,v],f,C in the chart {V~,x~}. Then (u,A(f)v) = A(f)[a,v].

Proof (i)Let v = f
2(~)i and a = ~(c~)u.Then

(u,A(8~~)v) = (u,~(c;A(&,~~f2(c)~)
= (ii,~(cJ~(6,~~x f2))

Fromthecovarianceof thequantumfield andthestrongcontinuityof J~(secLemma
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1) we obtain

x f2) =fdz(detC~(z))hI2~YU(g(z))x

x J~(6~~x f2) =

= f dz(det ~

(3)
og(z)~ x f2 og(z)~

Jv(fdz(detC~(z))
2Y6,~~

og(z)1 x f
2 og(zY~

For simplicity we assume that f2 o g(z)~ has supportin onechart {U, ~} for all

z C suppw(.) (in general we haveto decomposethe integralinto N1-parts and f2
into N2 -parts. But the argumentationfor eachof thesefinitely manypartsis the same
asin thefollowing). With respectto thechart {V~x U, a~x ,~}theexpression(3) can
be written

Jvxu(fc1r(c1dt C~(z))
112~T(~Y

(4)
x

where (~(‘y(z,a
1)) = ~~(‘y(z,z1)) (detC9(a1))”

2. Applying now Lemma2 we
get that the integrandin thisexpressiontendsin C

0
0°(U

2 ,~x ttU) — topology to a func-

tion g~(a1,a2).Since J9(~)is stronglycontinuouswe find ~ x f2)
convergesstronglyto avector v(p) from IC. Setting A( P)[a, v] := (ii, v(P)) we

obtain the desiredresult.

(ii) That lC(N~) is dense in IC was alreadyremarked(N~was defined at the end

of Section 2). Nowwe define approximate delta functions
6nP(~ for the points P(y) C

N~by their representations~~(a
1— y) := 6~(a1— y)(detG~(0))’

12(detG~(y))1/2
in the chart {V

2,a~}.Replace in (3) 6,~ by
6~~P(y)•Then the integrand in (4) has the

form

(detC~(z))”2w(z)~~(’7(z,a
1—y))f2~(’72(z,a2)D,~)).

BecauseofLemma2 (replacinga1 by a1 — y ) wegetthat theintegraltendsto ~( a1 —

y, a2) in C~(U2~x A)-topology andis a C°°-functionin p. Thestrongcontinuity

of J~gives then the desired result.
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(iv) Weworkinthechart{V~,a~}andset(~~(a):= (~(a—y).Nowweconsider

the expression

f dy(det ~

It is well-defined because of the strong continuity of A~(.).Again the strong continuity
allows to write

f dy(det C~(y)) V2f(y)A~(c~)u=

(5)
= A~(fd y( det C~(v))112(~,~f(~))a.

is an approximate delta function for the point a with respect to the variable
y. Thus the integral in (5) tends in C°°-topology to the function (det G~(a))’/2f( a).

This implies that (5) stronglyconvergesto thevector A~(f) a = A( f) u, where f also

denotes the corresponding function on 14. On the other hand we have

(v~fdv(detC~(v))h/2f(v)A~(ç~)u)=

= fdvdetc~yh/2fyv,A~ç~u.

Because of (i) and (ii) the integrand on the right handsidetendspointwiseto the

C°°-function(detC~(y))1/2f(y)A~(y)[u,v] on U
3~~ p. Moreoverfrom theproof

of (ii) we seethat the integrandtendsuniformy on U3 ~ to the limit. Therefore we can
apply the Lebesgue dominated convergence theorem and get:

A(f)[v,u] : = fd~(det C~(y))
112f(y)A~(y)[v,u]

1/2

= lirn (v~Apfd~(detCp(~))

f(y)A~(ç~)u)=

=(v,A(f)a), vCIC(.W~),uCV
9.

(iii) It follows from the covariance of the quantum field, from (i), and from the fact

that 6 g~
1 is an approximate delta function for the point pP.

REMARK 3. This theorem,inparticular(iv), saysus that quantum fields haveameaning

as sesquilinearforms at eachspace-timepoint P. The dependence on P is locally
continuous. In generalwe haveno commondomainfor all pointsP C fyi in difference

to thecasewhere 14 is in the Minkowski space-time.
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REMARK 4. Theproofshavebeengiven only in one chart. But using the definition of

the quantumfields as operator-valuedlinear formson M it is easy to check that the
proofs and definition do not depend on the choice of the charts.

4. QUANTUM FIELDS AS LIMITS OF LOCAL OBSERVABLES

Assume we have a set of quantum fields {IC, U( .) , 2),,A,( .) } which arerelatively
local to a given local net of algebras of observables {IC, U( .) , A}. Then the question is
whether wecanrecover these quantum fields from the algebra A. In casethat 14 is the
Minkowski space-timethis was solved by Fredenhagen, Hertel [1] under the additional

assumption that the quantum fields are energetic bounded and by Rehberg,Wollenberg

[2], Wollenberg [3] for arbitrary quantum fields over the Minkowski space-time.
For the aim to recoverthequantumfields from A it isnecessaryto introduceoperator

functions A(S) over fvt for elements A C A. Fix a point P E 14. Choosea neigh-
bourhood of P, a submanifoldc~from g, anda chart ‘V,,, x~, asdescribedat the
end of Section 2. Take a sequence of elements g,~ C ~ such that ~ = M. Thus
the set {W~,a~}is an atlas for 14 where W~:= ~ = o g;’,W0 = W~,
and Po = I. Let P,~C W,~. Then P,~= g~g(z)Pfor some a C U2p = ~ Thus
we define (in the region W~)

(6) A(P~): U(g~)U(g(z))AU(g(z))*U(g~)~.

Nowlet f C C~°(14). There is a partition of the unity by functions x~corresponding
to W,. Thatis, ~ 1 forall PEM, and x~EC~°(M).
We set f,~:= fox~anddenote by J,~the correspondingfunctionin thechart{W~,a~}
given by J,~:= f,~o a;’. We set

A[f] :=~A[f~],

(7) A[f~] : = fdz(det C~(z))h/
2U(g

0)U(g(z))AU(g(z))*U(g~)*j~(z)

= U(g~)[fdZ(detCo(Z))hI2U(g(z))AU(g(z))*Jn(z)] [1(g~)*.

Here we have used that det G~(a) = det C0(z) = det G~(a), becauseof our spe-

cial choice of coordinates, and the fact that g~are isometries. Thus the integration
reducesto integrationovertheregionU2 ~, C R~.Naturallythis definitiondependson
the chosenatlas. If A is invariant under the isotropy group S~, of the point P, i.e.
U(g)A = AU(g) for p C S~,thenthedefinition is independentof the specialatlas.
Now weare ableto formulatethefollowing statement.

THEOREM 2. Let {IC, U( .) , 2), A( .)} be a quantum field which is relativity local to
a given local net of algebras {IC, U( .) , A}. Fix a point P C fyi and choose an atlas
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{ W,~,a,~} as above. Then there is a sequence A~C A( O~)where O,~ is a sequence
of openboundedregionsshrinkingto thepoint P suchthat

s—lirn A~[f]uA(f)a, a CD
2,

for all functions f C C~°°(fvt).Here V2 C V is a countable dense set which is a
core for all A( f) (naturally A~doesnot dependon f and u).

Proof 1. First we definethe set V2 accordingto the chosen atlas. We set V2
{ U( g,,) . . . U(g,) v; v C VØ~J3C IN , m C IN } where V~C V is countable core
for all A(f). Thus V2 C V. From (7) and the invariance of V2 under U(g,) it
follows that issufficientto provethe theoremfor all functions f C C0

00(fvt) with supp

f C W~= W
0. Therefore we restrictourselvesto this regionandusethecorresponding

definitions and notations introduced at the end of Section 2.

2. Let 6,~,beanapproximatedeltafunctionfor thepoint P andlet f CC C~°(M)

with supp f C Vi)~.Let a C V. Then

A(fu6~~)u:=fdz[(detCo(z))V2f(z)u(g(z))x

x A(6~,,~)U(g(z))a]=

= f dz(det C0(z))’
12f(z)A(6~,~ og(z)’)a

=A (fdz(det C
0(z))”

2f(z)6~~ og(zY1) a

=A~(f dz(detCo(z))V2f(z)((’7(z,.))) a

where we have used the strong continuity of A(6,.~o g( a) 1) in a. The integral

on the right hand side tends in C~°(M)-topology to a limit. This can be proved in the

sameway as Lemma2. Thus A(foä~~)a strongly converges to a vector u(f).

3. We showthat u(f) = A(f)u. Assumethat wehaveprovedthis for a C V~
and functions f with supp f C N~.With the help of thepartitionof theunity for
and the factthat V

9 is core for all A(f) we can easily extend this to all a C V and

f C C~°(W~).
Nowwe prove u( f) = il( f) a for a C V9 and f C C0

00(N~)with the help of
Theorem I (ii), (iv). Wehave
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lirn(v,A(fo6,~~u)=

=~irnf da(detC0(z))V
2f(a)x

~ fAp(a)EU(g(a))*v,U(g(a))*u]

(~(a)da=

=lim fdz(det C
0(a))”

2

f(z) f Ap(~
2(z,x))[v,u1c(a)da=

= fd z(det Co(z))’
12f(z)A~(a)[v,u] =

=A(f)[v,u] = (v,A(f)u)

where ‘7
2(z, a) are the coordinates of the point g(a)P(a).

The interchangeof the integralwith the limit is aneasyconsequenceof the C~—
propertiesof ‘y2(a,a) and A~(y)[v,u]. This gives u(f) = A(f)u.

4. In PropositionI weintroducedtheoperatorsA0(f) which are affiliated to the al-
gebraA(O). Thus A0(f)* isalsoaffihiatedto A0. Let A0(6,,,~Y= U~I~4O(6n~,)*I
be thepolardecompositionand let P~(A) be the spectral projections of

Then P~(A)A0(6~~) = P~(A)jAo(6,~~)*IU,~ and (P~(A) A0(6,.~~))* are bound-
ed operators belonging to A(O) if 6 is a bounded interval of R. Set W~(A)

U~P~(A) U,~. Thenweget (P~(A)A0(6,~~))*= W~(A)A0(6~,~))*.Nowwede-
fine

(8) Am := (I/2)[Pm(Am)A0(6mp) + Wm(Am)AO(6m2)*]

By definition we have A~= Am and Am C A( Om) where Om is asequenceshrink-

ing to thepoint P becauseof thepropertiesof thesupportof Next we wantto

prove that

(Am[f] —A(f))u

tends stronglyto zerofor u C V2 , f C C~00(Vt)~).Insertingthe definition of Am[ 11
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and using A0(f)u = A(f)u = A(f)*u for u C V,f = f we obtain

IIAm[f]_A(f)hII�(h/2)(Ilfda(&tCo(z))h/2f(a)x
x U(g(a))Pm(Am)U(g(z)YA(6mpog(zy’)u_A(f)a H~

+ f da(detGo(z))”
2f(a)U(g(a))W~(A~)U(g(z)yx

(9) xA(6m,poP(a)~1)u_A(f)a~I)�

II A(fD6m,p)U — A(f)u II +

+ (I/2)fda(detCo(a))1/21f(a)Ix

x {~(Pm(L\m) — l)U(P(Z)YA(6mpOg(Z)~’)U +

+ (W~(A~)— l)U(g(z))*A(~~pog(a)~l)u~}.

The first term on theright handsidetendsto zero as m -~ oo becauseof 1. To prove
that the secondand third termtendsto zero as m — oc it sufficiensto showthat the

expression

c(m,u) : = sup { (P~(Am)— 1)
zEU,~

U(g(z)YA(6mpog(a)~’)aII +

+ Ii (W,~(A~)— I)U(g(a))*A(6mpog(zYl)a II)

goesto zero as m — oo for a suitablechoiceof the boundedintervalls Am. Since

A(6~pog(z)~)uand U(g(a)) arestronglycontinuous,thesetof vectors{U(g(z))*
A(6~og(zY1) a; a C ~ is for fixed m and a a pre-compact set in norm. On the

otherhand (~m( A) — I) and (Wm(A) — I) tendon compact(also on pre-compact)

setsof vectorsuniformly to zero as A —* IR (for fixed m). Thus,forgiven � > 0, m,
and u, weobtainthat c(m,u) < if we chooseAm largeenough.If weusethis fact
therestof theproof issimple.Firststep: Set m = I and a = a

1 C V2. ChooseA1 so

largethat c(l,a,) < �. Secondstep: Considerc(2,a1) and c(2,a2). Choose A2
solargethat bothtermsare smallerthan (i/2). Continuing this procedure we get that

c(m, u3) — 0 as m — oo for each a8 C V2. This concludes the proof. •

REMARK 5. This theoremis similarto the correspondingone for Minkoski space-time.

Onecanalsoprovethat the sequenceAm tends to A(P)[~,.], i.e. lim (a, Amy) =
m-.oo

A(P) [u, v]. This meansthe set of limits of sequencesof obscrvablesmeasurablein

space-timeregionsshrinkingto apoint P containsall quantumfields A(P) [.,.] which
are relatively local to thegivennetof observables.
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5. LOCAL NETS OF ALGEBRAS AND THEIR LIMITS

In the last section we have seen that special sequences Am C A(Om) belonging
to regions 0m shrinking to a point P give us backthe quantum fields. Now the
question is if we candefine a topology on A such that the limits of A belonging to

space-timepoints define us always quantum fields. This question will be answeredun-
der the additional assumption that the isotropy group S,, of a point P (thus for all
points) is compact. For instance the following examples satisfy this assumption: 1.
fyi -Minkowski space-time,Q-translationgroup R”. 2. 14 = R x s~-Einstein cos-
mos, g = R = SO(4). 3. M -stationarypartof thedeSitterspace-time,Q-translation

subgroup of the de Sitter group.
It is alsopossibletoomit theassumptionthat is compactButthenthetopology

on A is morecomplicatedandlooksa little artificial.
We usehere the sequenceg~C Q, theatlas {W~,z~},andthedefinitionof A[f]

(see(7)). Let V be acountabledensesetof vectorsfrom IC which is invariantunder
theunitaryoperatorsU(g~)(like theset ~2 inTheorem2). Wedefinefor eachvector

u C V,O CM (0 openand bounded),and C~°(O)-norm.~ aseminonnonA:

p(u,O,cw;A) := supfEc~~O(O)IfI;1 A[f]u I~,A EA.

Asetofseminorms{p(u,O,c~(u,O);.),u C V,O C M} definesusalocallyconvex
topology r( 1) on A.

DEFINITION 3. Let A~= A~C A(O~) where the regions O,~shrink to the point P
as n —÷ 00. Suppose that:

(i) U(g)A~=A~U(g)forgES~,nEN.

(ii) A~is a Cauchy sequencefor a topology ~i-(~), i.e. p(u,0, c~( u, 0); A~—

Am) —* 0 as m,n —, 00 for each u C V,0 C ~t and c~(u,0).
Then we call the sequenceA~a shrinking Q — covariant r(V) — sequencefor

thepoint P.

As alreadyremarkedthe invarianceof A~underthe isotropygroup S
9 impliesthat

the definition of A~[f] is independent of the special choice of the atlas (the function

A~(P’):= U(g)A~U(g)on 14 with P’ = pP is covariant). The next theorem
connectssuch shrinking g-covariant i-()) -sequenceswith quantumfields whichare
relativelylocal to the givennet {IC, U( .) , A).

THEOREM 3. Let {IC, U( .) , A} be a local net of algebras. Let A~bea shrinking

g -covariant i-( ~))-sequencefor thepoint P. Then this sequencedefinesa quantum
field {IC,U(.),V,A(.)}, whereV:={U(g)a;UCV,g Cg}, bytherelation

A(f)u := s—urn A~[f]a
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for a C V and f C CS°(fvt).Furtherthequantumfieldis relativelylocal to {IC, U(),

V, A}. If A is a causalthenthe quantumfield is also causal.

Proof 1. Since A~[f1a is a Cauchysequencein IC thereis a limit vector u(f)

s—lirn A~[f]. Wedefineanopcrator A(f) by A(f)a := u(f) on V for fixed f.
Further A(f)u A(f)u becauseof the samerelation for A~[f](A~= A~).Thus

A( f) is closable.Since A~[f] is covariantwe get

U(g)A~[f] = A~[f.g’]U(g), p CQ.

Thisshowsthat the sequenceA~[f] alsoconvergeson the larger set V ~ V. That is

A(f) is definedon V and A(f)*a = A(f)a for a C V. The eovarianceof A(f)
easily follows from the covarianceof A~[f]. Thus (i) and (iv) of Definition 1. are

fulfilled.
2. Now weprove(ii) of Definition I. From Definition 3 weget

Ii A(f)u iI~ (A(f) — A~[f]a H +

+ IIA~[f]aH�c~(f,a)+

+ p(O,a,a(O,a);An)ifin.

The first termon theright handsidetendstozero as n — oc. The secondterm can be
estimated by c(O, a) fin becauseA~is a Cauchysequenceand thereforeuniformly
boundedin the seminorms.Thuswe get A(f)a INz~jc(O,a)if In. Thisprovesthe

strongcontinuityof the map C~°°(M)~ f — A(f)u.
3. ~ is separable.Let l~be a countabledenseset of ~. Then U(c~)is strongly

densein U(~). Usingthis, the strongcontinuity of U(~)and A(.), and the covari-
anceof A(S) weget that V, := U(g~)VC V is a countabledensewhich is a core

for all A( f). The relativelocality of A( f) to A(0) follows by a limit procedure
from the correspondingpropertyfor A~[f],suppf C 0. The causalityof A() is a

consequenceof (A~[f]a,A~[g]v) = (A~[~]a,A~[fiv).

It remainsto showthat suchshrinkingsequencesfrom A leadto all quantumfields
relatedtothegivenalgebraA. In Section4 wehaveshownthatquantumfields relatively
local to thealgebraA are stronglimitsof A~[fl Thatthis sequenceA~is a Cauchy

sequencein some r(V)-topology follows easily from the proofof Theorem2. The
only differenceis that the sequenceA~in Theorem2 is in generalnot invariantunder
the isotropygroup S~of P. But this canbe reachedin the following way:

Replacethe sequenceAm from (8) by

(f~(d~)) ~
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where ~(d ‘rny) is theHaar measurefor thecompactgroup 59. Thus Am is now invariant
underS~.The proof of Theorem 2 works also with some smallmodification for this
sequence Am. Onehasto usethat thefunctions ~ o’y ‘y C S~,are also approximate

deltafunctionsforthepoint P becauseof ‘yP = P. Thus a— lirn A(fo6;poy~)u =

A(f)u forall ‘y C S~.Furtherusethat{U(g(a)YU(~y)*A(6,,,,po,y_bog(a)_l)u;a C

U2,9,‘y C S9} is a pre-compact set of vectors. Weomit the details.
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